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Abstract: The validity and usefulness of empirical data requires that the data analyst ascertains the cleanliness of the collected 

data before any statistical analysis commence. In this study, petroleum demand data for a period of 24 hours was collected from 

1515 households in 10 clusters. The primary sampling units were stratified into three economic classes of which 50% were drawn 

from low class, 28% from medium class and 22% from high class. 63.6% of the questionnaires were completed whereas 

incomplete data was computed using multivariate imputation by chained equation with the aid of auxiliary information from past 

survey. The proportion of missing data and its pattern was ascertained. The study assumed that missing data was at random. 

Nonparametric methods namely Nadaraya Watson, Local Polynomial and a design estimator Horvitz Thompson were fitted to 

aid in the estimation of the total demand for petroleum which has no close substitute. The performance of the three estimators 

were compared and the study found that the Local Polynomial approach appeared to be more efficient and competitive with low 

bias. Local polynomial estimator took care of the boundary bias better as compared to Nadaraya Watson and Horvitz Thompson 

estimators. The results were used to estimate the long time gaps in petroleum demand in Nairobi county, Kenya. 
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1. Introduction 

Data is a long lived asset used in many unforeseen ways 

including data mining, mass customization and optimization. 

Data need to be of high quality so that decisions can be made 

on the basis of its reliability and validity. Quality data is an 

accurate representation of the part of the “real world” that it 

models and should be fit for the purpose of which it is 

designed for [1]. This entails that data ready for analysis 

should be accurate, precise, complete, current, non-redundant, 

portable and credible. Poor quality data is costly to diagnose 

and repair with most costs being hidden and hard to quantify. 

More specifically, incomplete data leads to extra resources in 

correcting, dealing with reported errors and reworking. The 

consequences are adverse across disciplines from loss of 

revenue through customer dissatisfaction in business, lowered 

employee morale in human resource among others. It is thus 

imperative that to improve on the quality of data, appropriate 

tools and techniques need to be developed [2]. Most data 

quality problems emanate from poorly defined concepts, 

incomplete questionnaires, inaccurate data entry and checking 

processes [3]. To mitigate these problems, a robust data 

quality plan is eminent and should include every definition of 

a record, its timeliness, completeness, accuracy and how it 

will be monitored. With complete data statistical inference can 

provide a transitional framework to generate insight to inform 

decision. Thus identifying any data gaps before other factors 

are considered is imperative. 

In the energy sector, to facilitate the installation of different 

energy storage mechanisms including pump dispensers, pipe 

work at service stations, consumer installations and highly 

inflammable gas requiring huge safety and environmental 

implications data driven informed decisions help to avoid 

calamities as evidenced with oil spill over [4]. In most 

developing countries, analysis of energy demand has 

concentrated on innovative ways of switching from the use of 

non-renewable energy to renewable energy like wind 

substituting diesel as a source of power for pumping, 

converting diesel powered process machinery to electrically 
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powered machines, briquetting agricultural residuals to 

replace kerosene as cooking fuel in urban areas, alcohol for 

transport vehicles to replace diesel is another thought among 

others. Thus with discovery of oil in some developing 

countries and depletion of oil in others, modeling energy 

demand has become essential due to its adverse consequences 

in terms of environmental and its overall cost implication [5]. 

2. Incomplete Data due to Missing Values 

Missing values can either be omitted at random (MAR) or 

omitted not at random (MNAR). Omitted at Random implies 

that the propensity for a data point to be missing is not related 

to the omitted data, but it is related to some of the observed 

data. This has nothing to do with the missing values but has to 

do with the values of some other variable. On the other hand, 

for MNAR, the probability of a value missing varies for 

reasons that may be unknown. To distinguish between MNAR 

and MAR it is imperative to assess the nature of data and its 

quality in terms of completeness, the use of descriptive 

statistics such as frequency polygons as well as the scatter 

plots and more advanced methods including the use of 

estimators such as Nadaraya-Watson, Horvitz Thompson and 

Local Polynomial are some of the most promising methods of 

solving data gaps [6]. For empirical data analysis, where the 

samples are identical and independently distributed, 

non-parametric estimation procedure with a bandwidth 

parameter can be used as a modeling technique for the missing 

values. The starting point is identifying a sample �  of � 

paired observations ��� , ���, 	 = 1,2, … , �  from a 

population�, of size N. This enables one to find an estimator 

for ����� = ����� of a missing population [6]. 

2.1. Multiple Imputation for Missing Data 

In survey, missing values as a result of non-response can be 

addressed through multiple imputation (MI) methods. In 

singular imputation methods, a measure of central tendency is 

used to input the missing values. Multiple imputation narrows 

uncertainty about missing values by creating several different 

imputation options of which several forms of the same data set 

are created, which are then combined to make the most optimal 

values. When used correctly MI can reduce bias, improve 

validity, increase precision and the results are robust and 

resistant to outliers [7]. Missing data point can be estimated by 

the average values of the parameter estimate obtained as point 

estimate based on the standard errors. This involve combining 

prior information about a parameter of interest with new 

evidence from a sample or through resampling with an 

appropriate probability distribution [7]. A naive or unprincipled 

imputation method may create more problems than it solves, 

distorting estimates, standard errors and hypothesis tests [8]. 

2.2. The Chained Equation Approach to Multiple 

Imputation 

Multivariate imputation by chained equations (MICE) 

operates under the assumption that missing data is at Random 

(MAR), which means that the probability that a value is 

missing depends only on the observed values [9]. Many of the 

initially developed multiple imputation procedures assume a 

large joint model for all the variables, such as a joint normal 

distribution of which for large datasets, with hundreds of 

variables of varying types, this is rarely appropriate [7]. 

Multivariate imputation by chained equations (MICE) is a 

flexible approach in which a series of regression models are 

run whereby each variable with missing data is modeled 

conditional upon the other variables in the data. This means 

that each variable can be modeled according to its distribution 

whereby binary variables are modeled using logistic 

regression, continuous variables modeled using linear 

regression, multinomial logit model for categorical variables 

and a Poisson model for count variables. In MICE procedure, 

all variables that are to be used in subsequent analyses, 

whether or not they have missing data may be predictive of the 

missing values and are included in the imputation process. 

One key point is to include the variables that are likely to 

satisfy the MAR assumption. Beyond that, the specific issues 

that often come up when selecting variables include: creating 

an imputation model that is more general than the analysis 

model; imputing variables at the item level vis a vis the 

summary level and imputing variables that reflect raw scores 

vis a vis standardized scores. 

3. Nonparametric Analysis 

Non-parametric methods estimate the distance between a 

point and its neighbors and the estimation depends heavily on 

the bandwidth and its span. These methods consider 

correlation between available auxiliary data-set and the 

missing response variable as missing at random. The general 

nonparametric regression models are either of fixed or of 

random design, such that if �  data 

points ���, ���, ���, ���. … ���, ��� have been collected, the 

relationship is modeled as 

�� = �� + ��               (1) 

Where, �  is the predictor variable also known as the 

regressor, � is the response variable and � is the unknown 

regression function with observation error �� of which���� =
0 and������ = ��. The fixed design model is concerned with 

controlled non-stochastic repressor �  variable, this implies 

that the regressors are controlled by the researcher and are 

simply assumed to be measured without error. In fixed design, 

for any given observation  ��� , ��� , �� ∈ ℜ"  and �  is an 

independent random variable with  ���� = ���� . Random 

design models are used in observational studies and are 

common in non-experimental science. The observed predictor 

variables are independent and identically distributed �		#� 

random variables such that 

���� = ���|�� = % � &�',(�
&�'�(  )�        (2) 

Where *��, �� is the joint density of ��, �� and *��� =
*+���  is the marginal probability function of  � . The 

approximation of the function ���� is through smoothing 

method of the form �,��� = �
� ∑ .�/��/��0� , where .�/  are the 
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weights. The common smoothing methods include the kernel, 

the nearest neighbor, the orthogonal series and the spline 

method. This study concentrated on kernel techniques which 

are linear estimators in that the value of the estimator at any 

point � is the weighted sum of the responses. The weight 

function is defined as: 

12�� − ��� = �
2 1 4'5'6

2 7            (3) 

With the function 1  supported on 8−1,19  that has a 

maximum at zero. The shape of the weights satisfies the 

moment conditions 

: 1�;�#; = 1
�

5�
, : ;1�;�#; = 0 

�

5�
 

: ;�1�;�#; ≠ 0
�

5�
 ��# = = : 1�;��#; < ∞

�

5�
 

Where K is symmetric about zero. The kernel with finite 

support can be rescaled to have support on 8−1,19. Kernels, 

which have infinite support on the entire line, result to 

estimators with global bias difficulties. The smoothing 

parameter ℎ determines the size of the weights. Small ℎ 

leads to wigglier (rougher) estimators while larger ℎ leads to 

a more averaging (horizontal) estimator. 

3.1. Nadaraya and Watson Estimator 

Assume the observation of some variable �  have been 

taken � times for some utility at times A� ⋯ , A�. Let �� , be 

decomposed into two parts, ��∙�  the regression function 

which represents the true underlying change curve following 

the economic and physical potential and D� the errors which 

may not depend on time. These errors not only stand for 

observational error but also for economic random variation 

due to seasonal and other exogenous factors. We assume that 

0 ≤ A� ≤ A� ≤ ⋯ ≤ A� ≤ 1  where A�, A�, … , A�  is the 

explanatory variable analogous to ��, ��, … , ��  for ease of 

notation. A kernel estimator �,�AF� for ��AF� can be written 

as: 

�,�AF� = G .��AF; A� ⋯ , A�: ℎ���
�

�0�
 

where .� , are the weights given by 

.� = �AF; A�, ⋯ , A�;  ℎ� = G 12�A − A��/ G 12KA − A/L
�

/0�

�

�0�
 

The weights do not depend on M��N and therefore �,�AF� is 

a linear estimator which can be expressed as a minimiser of 

the locally weighted least squares 

�,�AF� = ∑ O�� − ∑ P/�A� − AF�/Q
/0F R�12�A� − AF� ��0�  (4) 

Where the squared part of the right hand side of (4) 

represents the polynomial part and the other part represents 

the local constant. While the sum ranges from 1 to �, only 

those ��  lying in the interval �AF − ℎ, AF + ℎ�  contribute 

to �,�AF�. This leads to 

�2��� = ∑ 1Kℎ5��� − ���L����0� ∑ 1Kℎ5��� − ���L��0�S   (5) 

For simplicity, we define (5) as �T�A� *U�A�⁄  which are the 

finite sample approximation to 

��A� = % �*�A, ��#�W
5W  and *�A� = % *�A, ��#�W

5W  

3.2. Local Polynomial Estimator 

The idea of local polynomial estimators has been widely 

studied by [10], [11] and [12]. Suppose that Locally the 

regression function m can be approximated by 

��X� ≈ ∑ Z�[��'�
/! �X − ��/ ≡ ∑ P/�X − ��/Q

/0F  Q
/0F  (6) 

For z in a neighborhood of x. By using Taylors expansion, 

m (z) can be modeled locally by a simple polynomial model. 

This suggests using a locally weighted polynomial regression 

of the form 

∑ O�� − ∑ P/��� − ��/Q
/0F R�12��� − ����0�         (7) 

Where K (.) denotes the kernel function and h is a 

bandwidth as presented in (3). Denote by PU/  �^ = 0, … , _� the 

minimizer of the equation (7). The above exposition suggests 

that the estimator for ��`���� is 

 �, `��� = �! PU`                  (8) 

Where the whole curve �,`�. � is obtained by computing 

the local polynomial regression with x varying in an 

appropriate estimation domain. With p=1, the estimator 

�,F��� is termed a local linear regression smoother or a local 

linear fit. This estimator can be explicitly expressed as 

 �, F��� = ∑ a6b6cd
∑ a6cd

                (9) 

Local polynomial fitting is an attractive method both from 

the theoretical and practical point of view [11]. The method 

adapts to various types of designs including random, fixed 

design, highly clustered and nearly uniform design. There is 

an absence of boundary effect, the bias at the boundary stays 

automatically of the same order as in the interior, without use 

of specific boundary kernels. The asymptotic minimax 

efficiency is100% among all linear estimators and only a small 

loss has to be tolerated beyond this class [11]. 

3.3. The Horvitz-thompson Estimator of Total 

Given a finite population of N  individuals, and we are 

interested in some trait that they have. Let Xg denote the value 

of the trait for individual j We don’t get to see all these Xgij 

we only sample n < N  of them. With this sample of n 

individuals, we may be interested in obtaining an estimate of 

the total T = ∑ Xgmg0�  or the mean 

τ = �
o ∑ Xgog0�                 (10) 
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If the probability of individual j  being included in the 

sample is πg the Horvitz-Thompson estimator of the total is 

given as: 

Tqrs = ∑ tu
vu

mg5�                 (11) 

This estimator gives each observation a weight which is the 

inverse of its probability of inclusion and under unequal 

probability sampling, the Horvitz-Thompson estimator (HT 

estimator) is an unbiased estimator of the population total [13]. 

This estimator can also be defined as: 

t̂rs = ∑ tu
vu

mg5� = ∑ wgXgz∈j            (12) 

where wj is the design weight of the jth element. The HT 

estimator of the population mean can be expressed as 

y|}rs = ~U��
oq = �

oq ∑ �u
vug∈j = �

oq ∑ wgyg        (13) 

Where Nq = ∑ wgg∈j is the estimated population size. With 

the same functional form, we can rescale the weights so that 

∑ wgg∈j = n and rewrite (13) as 

y|}rs = 1
n G w� gyg

g∈j
 

The design based Horvitz –Thompson estimator of 

population total will thus be given by 

Tqrs = �
m ∑ �u��u

tu
                 (14) 

Where y|g = ∑ ��uu∈�
mu

, xg, j = 1,2, … , N  are known auxiliary 

variables, further ∑
=

=
N

j

jxX
1

. The efficiency of 

Horvitz-Thompson estimator can be improved by using 

auxiliary information ix  to model the finite population 

sy j '  as a realizations from an infinite super population 

model, ξ , relating jx  to jy  via equation (1). 

3.4. Model Based Estimator of Population Total 

The potential disadvantage of estimators motivated by 

super population model is inefficiency under model 

misspecifications [14]. This could be avoided by replacing the 

parametric specification by a non-parametric specification in 

which ��. � is smooth function of jx  and (.)V  is smooth 

and strictly positive [4]. To enhance efficiency, the model 

based estimator of population total using Nadaraya Watson is 

given by 

Â�a = ∑ ����	��∉� + ∑ �/�∈�           (15) 

Where ���'�� is as defined in (5). 

The model based estimator of total using local polynomial 

is given by 

Â�Q = G �F��	�
�∉�

+ G �/
�∈�

 

Where �F��	� is defined in (9). 

The model based estimators are highly efficient when 

����	� and =K�/L are correctly specified but biased and even 

inconsistent if the model is wrong. In surveys involving 

clusters with equal number of second stage units, equal 

probability of selection is used [13]. In many surveys however, 

the second stage samples are not equal. This research presents 

a case where the Secondary Sampling Units, SSU are not 

necessarily equal. 

3.5. Smoothing Parameter Selection 

In nonparametric kernel estimation, the smoothing 

parameter effectively controls the model complexity. When 

ℎ → ∞, local modeling becomes a global modeling, when 

ℎ = 0 the estimate essentially interpolates the data and the 

modeling bias will be small. Since the bias is proportional to 

ℎ� and the variance proportional to �2, the bandwidth has to be 

taken neither too large nor too small so as not to increase the 

bias and variance of the estimates [5]. The problem can be 

solved theoretically by choosing a bandwidth that balances the 

trade-off between the bias and the variance components, since 

the consistency of the estimator is based on the sum of the bias 

and variance. 

The positive value ℎ that minimizes any of the selection 

criteria namely AIC, BIC and ���� is selected as an optimal 

smoothing parameter. In this study, the smoothing parameter 

adopted was the Improved Akaike Information 

Criterion������, derived from the classical ���  for linear 

models under the likelihood setting: 

−2����	�	X�# ����	���	ℎ��#�
+ 2��;���� �* ��A	��A�# _�����A���� 

Thus, select ℎ minimizing 

���� = ��� ∑O(65&U��'6�R�
� + 1 + �M��������N

�5������5�  

= ��� ����5��(��
� + 1 + �M��������N

�5������5�  

= �����T�� +  �A���2�, ��            (16)

where,  �∙� is chosen particularly to be the form of the bias 

corrected version of the ��� . A��∙�  is the trace of the 

smoothing matrix regarded as the nonparametric version of 

degrees of freedom, called the effective number of parameters 

[5]. When   KA��∙�L = −2����1 − A���2� �⁄ � , then (16) 

becomes the generalized cross validation criterion. 

4. Results and Discussion 

In this study, the population of interest comprised of all the 

households within Nairobi County, Kenya, which was 

projected at 1,551,06. The sampling frame was constructed 
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using the Kenya Population Census of 2009 which had 

10,323 enumeration areas (EAs). Petroleum demand data in 

kilogram of oil equivalent (koe) for a period of 24 hours was 

collected from 1515 households which came from 10 clusters. 

A total of 963 households comprising of 63.6 per cent had 

complete interviews, 43 households comprising of 3.3 

percent gave partial answers while 457 households (30.2 per 

cent) of the households could not be accessed. The other data 

source of auxiliary population characteristics from the 

clusters in question were obtained from the records of 

previous survey [18-20]. 

The total cost of the survey was computed as, 

� = � ¡ �� + � ¡ � ¡ �� 

Where �  is the primary sampling units and �  the 

additional households [15]. With their unit costs being C1 and 

C2 respectively. Thus the average number of households in 

each primary sampling unit was computed as: 

�¢Q� = £¤d��5¥�
¤�¡¥                  (17) 

P is the proportion obtained from a pilot survey conducted 

before the main survey [15]. 

In this study, C1 was estimated to be KES 50,000 and C2 

was 2KES. The value of P was given by 84/100, the 

proportion of persons who used petroleum products during 

the pilot survey. Thus, �¢Q� was found to be 70 households 

in each Primary sampling unit (PSU). The number of PSUs 

used was computed to be 9.97 approximately 10 enumeration 

areas. Thus a total of (70X9.97) household's interviews were 

needed to qualify for this survey. To minimize non-response, 

the sample was inflated by 10% leading to a total sample size 

at 757 households in 10 PSUs. Random numbers were used 

to pick 288 clusters from a sampling frame obtained from the 

National Sample Survey and Evaluation Programme 

(NASSEP IV) consisting of 10,323 clusters in Nairobi 

County. Primary sampling units were stratified into low class 

representing 50 percent, middle economic class representing 

28.8 percent and high economic class representing 22 percent. 

This was done using Probability Proportion Sampling (PPS 

scheme) taking care of the clustering effect design, see Table 

1. 

Table 1. Primary sampling units selected for the study. 

Econmic Class PSU Serial number Expected number of Range Random number between 1 and range PSUs selected 

Low Class 1,2,…144 5 29 2 2,31,60,88,117 

Medium 1,2…81 3 27 8 8,35,62 

High 1,2…63 2 31 24 24,55 

Total 1,2…288 10 Total Clusters Selected 10 

Source: Household petroleum survey conducted in the country of Nairobi-aug-september. 

In this study, incomplete data was found to be due to 

non-response as a result of language barrier, failure to 

identify sampled respondent and loss of completed 

questionnaires by some enumerators. An evaluation of 

proportion of population with missing data and its pattern 

provided a diagnosing mechanism for a reasonable method of 

imputing missing values. Figure 1 depicts the proportion of 

population missing data and its missing pattern. 

 

Figure 1. The Proportion of missing data and the corresponding missing pattern. 

Age and income of household head had the most missing values with 33 percent of the expected respondents not 



6 Benard Mworia Warutumo et al.:  Estimating Total Energy Demand from Incomplete Data Using Non-parametric Analysis  

 

giving complete information. This implied that we would 

lose 67 percent of all the petroleum demand information 

collected within the 1515 households if missed data was not 

corrected through an imputation process. Missing 

information was imputed using auxiliary information based 

on the head of the households’ age, income, education status 

and the household population. This was done using the 

multivariate imputation by chained equations (MICE) under 

the assumption that missing data was at random. The 

observed values and the imputed values for the 10 clusters 

are presented in Table 2. 

Table 2. Imputed household Petroleum demand obtained through 

multivariate imputation by chained equations. 

Cluster Number Observed Imputed Total Demand 

1.00 62.38 41.31 103.69 

2.00 314.72 224.84 539.56 

3.00 84.05 70.33 154.38 

4.00 164.18 18.89 183.07 

5.00 64.48 46.04 110.52 

Cluster Number Observed Imputed Total Demand 

6.00 57.59 71.38 128.97 

7.00 376.57 396.82 773.39 

8.00 60.94 40.09 101.03 

9.00 359.72 206.38 566.10 

10.00 297.66 130.73 428.39 

Total 1,842.29 1,246.81 3,089.10 

Kilograms of oil equivalent (koe). 

In estimating the total demand in the population, the model 

based estimator (15) which uses Nadaraya-Watson, the model 

based estimator (16) which uses local polynomial, and the 

HT estimator equation (14) were compared. The bandwidth 

obtained from AICC was 6.6. 

For the Nadaraya-Watson Estimator, the bias concentrated 

between 165koe and 428koe. This estimate showed 

sparseness of data between the clusters with population of 

450 to 550 persons, which was not also equally spaced. 

 

Figure 2. The bias of Nadaraya Watson Estimator. 

Figure 2 shows that the bias ranged between -0.03049 to 0.05771 with the highest mean square error of 49,926.22koe as 

shown in Figure 3. 
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Figure 3. The Mean Square Error of Nadaraya Watson Estimator. 

The mean square error MSE seems to be in clusters lying between 400 and 550 persons with more than 99% of the demand 

ranging between 365 and 625. Figure 4 shows the boundary effect of the Nadaraya-Watson estimator with some inconsistency 

at the boundary and not clearly showing the ten clusters. 

 

Figure 4. The Nadaraya Watson boundary bias. 
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Overall, Nadaraya-Watson indicated an estimated total 

demand of 3,061,485.90koe. 

For local polynomial model based estimator, the mean 

squared error reported was 0.10417 koe with the estimate 

ranging between 101.03 to 940.28 koe. The bias of local 

polynomial estimation was between -0.00004 to 0.00005 koe 

with the bulk of its bias lying around the zero mark. The 

boundary bias captured all the ten clusters unlike the 

Nadaraya-Watson estimator as shown in Figure 5. The Local 

polynomial estimator was consistent at the boundary with an 

estimated total demand of 3,061,485.90koe. 

 

 

Figure 5. Local Polynomial boundary bias. 

For the Horvitz Thompson estimator, the average bias ranged -0.02734 to 0.06427 as indicated in Figure 6 while Figure 7 
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illustrates the boundary bias of Horvitz Thompson Estimator Horvitz Thompson estimator. 

 

Figure 6. Horvitz Thompson Estimator bias. 

Of the three estimators, Local polynomial had the lowest 

mean squared error as compared to Horvitz Thompson 

Estimator which reported the highest MSE followed by 

Nadaraya-Watson respectively. Horvitz Thompson estimator 

bias ranged from -0.02734 to 0.06427koe. This information 

should come in section. Table 3 reports the total estimated 

demand for the three classes namely low class, middle class 

and high class as estimated by the Local Polynomial 

estimator. 

 

Figure 7. The boundary bias of Horvitz Thompson Estimator. 
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Table 3. Final Petroleum Demand as estimated by the Local Polynomial Estimators for the Low, Middle and High Classes. 

Summary Estimator N Sum Minimum Maximum 

Bias (koe) 

Nadaraya Watson Estimator 10313 0.00563 -0.03049 0.05771 

Local Polynomial Regression 10313 0.00563 -0.00004 0.00005 

Horvitz Thompson Estimator 10313 0.05692 -0.02734 0.06427 

MSE (koe) 

Nadaraya Watson Estimator 10313 49,926.22 0.00003 34.38237 

Local Polynomial Regression 10313 0.104170373 0.00000 0.00002 

Horvitz Thompson Estimator 10313 56,455.50 0.17645 42.64341 

Petroleum Demand (koe) 

Nadaraya Watson Estimator 10313 3,061,485.90 165.01 427.56 

Local Polynomial Regression 10313 3,062,406.02 101.03 940.28 

Horvitz Thompson Estimator 10313 3,060,773.90 211.42 386.26 

Table 4. Final Petroleum Demand as estimated by the Local Polynomial Estimators for the Low, Middle and High Classes. 

Economic Class  Petroleum Demand (Sample) Imputed petroleum demand Total Estimate 

Low 
N 5 5,151 5,156 

Sum 1,09122 1,278,12486 1,279216.08 

Middle 
N 3 2,893 2,896 

Sum 1,00339 941,574.84 942578.23 

Low 
N 2 2269 2271 

Sum 994.49 842706.32 843700.81 

Middle 
N 10 10,313 10,323 

Sum 3.089.10 3.062.406.02 3.065.495.12 

 

5. Conclusion 

From this study, Local Polynomial Estimator performed 

better with less bias at the boundary as compared to the 

Nadaraya-Watson and the Horvitz Thompson Estimators. 

This study found that the bulk of petroleum demand in the 

county (49.85%) was consumed by the low class while the 

high class consumed less (22.09%). The remaining demand 

of 28.06% was attributed to the middle class. 

The bias of local polynomial estimation was between 

-0.00004 to 0.00005 koe with the bulk of its bias lying 

around the zero mark. The boundary bias captured all the ten 

clusters unlike the Nadaraya-Watson estimator. The Local 

polynomial estimator was consistent at the boundary with an 

estimated total demand of 3,061,485.90koe. 
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