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Abstract: Considered in this paper are two basic methods of approximating the solutions of nonlinear systems of algebraic 

equations. The Steepest Descent method was presented as a way of obtaining good and sufficient initial guess (starting value) 

which is in turn used for the Broyden’s method. Broyden’s method on the other hand replaces the Newton’s method which 

requires the use of the inverse of the Jacobian matrix at every new step of iteration with a matrix whose inverse is directly 

determined at each step by up-dating the previous inverse. The result obtained by this method revealed that the setbacks 

encountered in computing the inverse of the Jacobian matrix at every step number is eliminated hence saving human effort and 

computer time. The obtained results also showed that the number of steps that is reduced when compared to Newton’s method 

used on the same problem. 
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1. Introduction 

Numerical solution of algebraic equations is one of the 

main aspects of computational mathematics. Numerical 

computation involves numerical answers given numerical 

inputs. Such problem arises whenever mathematics is used to 

model the real world problems (See, De Cezaro, 2008). 

It is by no means uncommon for systems of nonlinear 

equations to occur in practice. Systems of nonlinear 

equations or simply nonlinear equations are equations whose 

variables are either of degree greater than 1 or less than 1, but 

never 1. 

Nonlinear equations arise in all branches of sciences and 

engineering. It is widely used in optimization problems and 

electrical circuits. There are few nonlinear equations that are 

readily solvable but these are definitely of the minority. 

Where no simple method exists for solving nonlinear 

equations, numerical methods are frequently employed and it 

is the purpose of this work to investigate some of these 

techniques. Gilberto (2004) presented methods for the 

solution of single non-linear equations as well as for systems 

of such equations using Newton-Raphson iteration method. 

Goh and McDonald (2015) discovered that, an exact line 

search at a point, far from the solution, may be 

counterproductive.  

Numerical techniques often make use of a process known 

as iteration. Solutions to these systems of equations	�F��x� �
0 ; i � 1, 2, 3, 4, . . . , n�,	are a problem that is avoided when 

possible, because no simple method (analytical) is found yet 

for solving these systems of equations. Hence this work is 

concerned with the numerical solutions of systems of 

nonlinear algebraic equations by steepest Descent and 

Broyden’s methods. Some simple examples are solved as a 

perquisite to each of these methods. 

The methods for solving a nonlinear system of algebraic 

equations of the type,	������ � 0, �, � � 1, 2, … , �, dates back 

to the seminal work of Isaac Newton. Nowadays a Newton-

like algorithm is still the most popular; this is due to its easy 

numerical implementation (See Vincent and Grantham 1997, 

Barbashin and Krasovskii 1952 and Powell 1986). However, 

this type of algorithm is sensitive to the initial guess	�� �
����, ���, , . . . , � ��!	 of the solution and is expensive in the 

computations of the Jacobian matrix 	"#�
"$�

and its inverse at 

each iterative step (See Chein-Shan & Satya 2008 and 

Powell 1986). 
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This work is aimed at closing the gap created by the 

problem of initial guess and the problem of finding the 

inverse of the Jacobian matrix at every iteration step 

encountered by Newton’s methods. Though Steepest Descent 

methodsserve the purpose of providing sufficiently accurate 

initial guess, butit will always converge even for poor initial 

guess (See De Cezaro 2008, Huang 2011 and Powell 1970) 

The idea behind Broyden's method is to compute the 

whole Jacobian matrix and its inverse only at the first 

iteration and to do a rank-one update at the other iteration 

steps while avoiding the inverse at each stage of the iteration 

(See LaSalle 1976, Gomes & Martinez 1992 and Goh 1994). 

2. Methodology 

Consider the solution of system of nonlinear algebraic 

equations for which we do not know a simple analytical 

technique of the form 

%��� � 0	                             (1) 

Given the function 	% is in the case 

ofn	variables��,	��	,	�&	,	�'	,...,	� 	which make the functions %�(��	,	��	,	�&	,	�'	,...,	� ),	%�(��	,	��	,	�&	,	�'	,...,	� ),	%&(��	,	��	,	�&	,	�'	,...,	� ),...,	% (��	,	��	,	�&	,	�'	,...,	� ) all zero. This 

system of equations can be written in vector form as 

F(() = 0	                              (2) 

Where 	� =	 [ %�	 , 	%�	 , .. .., % 	 ] and 	( =[��	 , 	��	 , 	�&	 , 	�'	 ,..., 	� ]. The methods of solution for one 

equation and one unknown will be adopted in this work.  

Steepest Descent Method 

This method is used to find sufficiently accurate starting 

approximations for the Newton-based and other techniques 

(See Fan and Yuan, 2005). The method determines a local 

minimum for a multivariable function of the form	): + → +. 

Although the method is valuable, quite apart from the 

application as starting method for solving nonlinear systems, 

the connection between the minimization of a function 

from 	+ 	-.	+	 and the solution of a system of nonlinear 

equation is due to the fact that the system of the form 

F (�) = 0 , has a solution at 	( =	(��	, ��	, �&	, �'	, . . . , � )!	 precisely when the 

function	)	defined by  

	)(��	, ��	, �&	, �'	, . . . , � ) 	= ∑ [%0 	(��	, ��	, �&	, �'	, . . . , � )]� 01�  (3) 

has the minimal value zero. 

The method of Steepest Descent for finding a local 

minimum for an arbitrary function	)	from	+ 	��-.	+	can be 

intuitively be described as follows; 

1. Evaluate 	)	 at an initial approximation 	2� =(2��, 2��, , . . . , 2 �)3 	 
2. Determine a direction from	2�	that result in a decrease 

in the value of	). 

3. Move an approximate amount in this direction and call 

it the new vector	2�. 
4. Repeat step 1 through 3 with	2�	replaced by	2� 

To extend this result to multi-variable functions, we need 

the following steps and definition.  

Step 1: compute	4(2�) = ∑ [%0(2�)]� 01� 	         (4) 

Step 2: Compute	54(2�) = 2[6(2�)]3�(2�) = 7� =(2�, 2�, . . . , 2 )                      (5) 

Step 3: Compute	8� = ||7�||� = :∑ (20)� 01� 	         (6) 

Step 4: Compute	8 = ;<=< = >=<(?<)	         (7) 

Step 5: Taking	@� = 0, @� = ABC = >C = 0.5	and	@& = 1 

Compute	4� = 4(2� − @�8)             (8) 

If	4& ≥ 4�,	we reduces the seize of	@&	by setting@& = GB� , 

if	4& ≥ 4�	still we reduce	@&	by setting	@& = GB�C,	until such a 

time we have	4& ≥ 4� 

Step 6: Compute	4& = 4(2� − @&8)            (9) 

Step 7:	ℎ� = (ICJI>)AC 	                   (10) 

Step 8:	ℎ� = (IBJIC)ABJAC 	                  (11) 

Step 9:		ℎ& = (KCJK>)AB 	                     (12) 

Step 10:	@� = 0.5(@� − L>LB)         (13) 

Step 11:	4� = 4(2� − @�8)         (14) 

If	4� < 4&, set	B = @�	 
Step 12: Compute	2� = (2� − @8)         (15) 

Brodyen’s Method 

This method is one of the most effective algorithms for 

solving nonlinear systems of equations when the number of 

equations and unknowns is very large memory less 

implementations of this method is frequently used (See Byrd 

and Nocedal, 2004)  

This method only requires n scalar functional evaluations 

per iteration and also reduces the number of arithmetic 

calculations to O(��). This method belongs to a class known 

as least change Secant updates that produces algorithms 

called quasi- Newton. This method replaces the Jacobian 

matrix in Newton’s method with an approximation matrix 

that is updated at each iteration step (See Goh, 2010). 

Suppose that an initial approximation 	2�	is given to the 

solution of 	�(�) = 0 . We calculate the next 

approximation	2�	in the same manner as Nwetons method.  

Step 1: find	7� = 6(2�)                   (16) 

Step 2: find	7�O� = [6(2�)]O�	         (17) 

Step 3: find F(2�)                           (18) 

Step 4: find	7�F(2�)                        (19) 

Step 5: find	2� = 2�−7�F(2�)         (20) 

Step 6: To find	2�, we know that		2� = 2�7�O�F(2�)  
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Step 7: find	7�O� = 7�O� + [(Q>	O?<J>R>)Q>S?<J>Q>S?<J>R> ], with	T� =	F(2�) − F(2�)	and	U� = 2� − 2�	          (21) 

Step 8: find	7�O��(2�)                              (22) 

Step 9: find		2� = 2�7�O��(2�)                        (23) 

Generally, to find subsequence approximation, steps 6-9 

are followed using the 

equation 	20V� = 20 − 70O��(20)	 and 	70O� = 70O�O� +
[(WX	J;XJ>J> YX)WXS ;XJ>J>

WXS ;XJ>J> YX 	] for	Z ≥ 1 

3. Numerical Illustrations and Results 

In this Section, to achieve the validity, the accuracy and 

support the theoretical discussion of the proposed methods; 

the computations, associated with the examples, are 

performed using Scientific Workplace 5.0. Furthermore, the 

performance of the methods is tested on some numerical 

examples contained in the literature.  

Examples 

We consider the following nonlinear systems of equations 

(a) ��� − 10�� + ��� + 8 = 0	 and 	����� + �� − 10�� +8 = 0 

(b) 3�� − cos(���&) − >C = 0, 
�� − 81(�� + 0.1)� + _���& + 1.06 = 0 

aO$>$C + 20�& + 10b − 33 = 0 

Using Steepest Descent method with 	(� = (0, 0, 0)!	 to 

find a reasonable starting value to the solution of the 

nonlinear systems of equation (a)  

Let 	%� = ��� − 10�� + ��� + 8	 and 	%� = ����� + �� −10�� + 8	With	�� = (0, 0)! 

Step 1: compute	4(2�) = ∑ [%0(2�)]� 01� = 46336	 
Step 2: Compute 	54(2�) = 2[6(2�)]3�(2�) = 7� =c−144−160d	 
Step 3: Compute 	8� = ||7�||� = :∑ (20)� 01� =215.2579848	 
Step 4: 

Compute	8 = ;<=< = >=<(?<) = (−0.668964731,−0.743294146)	 
Step 5: Taking	@� = 0, @� = ABC = >C = 0.5	and	@& = 1 

Compute	4& = 4(2� − @&8) = 7.95256047 

If	4& ≥ 4�,	we reduces the seize of	@&	by setting@& = GB� , 

if	4& ≥ 4�	still we reduce	@&	by setting	@& = GB�C,	until such a 

time we have	4& ≥ 4� 

Step 6: Compute	4� = 4(2� − @�8) = 45.81561794	 

Step 7:	ℎ� = (ICJI>)AC = −92580.36876	 
Step 8:	ℎ� = (IBJIC)ABJAC = −75.72611494	 
Step 9:	ℎ& = (KCJK>)AB = 92504.64265 

Step 10:	@� = 0.5 g@� − L>LBh = 0.750409309	 
Step 11:	4� = 4(2� − @�8)	 
If	4� < 4&, set	B = @�	 
Step 12: 

Compute	2� = (2� − @8) =(0.501993201, 0.557770223).	these are the starting values 

for	��	and	��	to be used in Broyden’s method in 

approximating the solution to the given nonlinear systems of 

equations (a). 

Let 	%� = 3�� − cos(���&) − >C, %� = �� − 81(�� + 0.1)� +
_���& + 1.06	 and %& = aO$>$C + 20�& + ��iO&

& 	 with (� =(0, 0, 0)! 

Step 1: compute	4(2�) = ∑ [%0(2�)]� 01� = 111.975 

Step 2: Compute 	54(2�) = 2[6(2�)]3�(2�) = 7� =
j −9−8.1419.38k	 

Step 3: Compute	8� = ||7�||� = :∑ (20)� 01� = 419.554	 
Step 4: 

Compute	8 = ;<=< = >=<(?<) =(−0.0214514,−0.0193062, 0.999583)	 
Step 5: Taking	@� = 0, @� = ABC = >C = 0.5	and	@& = 1 

Compute	4& = 4(2� − @&8) = 93.5649 

If	4& ≥ 4�,	we reduces the seize of	@&	by setting@& = GB� , 

if	4& ≥ 4�	still we reduce	@&	by setting	@& = GB�C,	until such a 

time we have	4& ≥ 4� 

Step 6: Compute	4� = 4(2� − @�8) = 2.535578495	 
Step 7:	ℎ� = (ICJI>)AC = −218.8788	 
Step 8:	ℎ� = (IBJIC)ABJAC = −182.059	 
Step 9:	ℎ& = (KCJK>)AB = 400.937 

Step 10:	@� = 0.5 g@� − L>LBh = 0.522959	 
Step 11:	4� = 4(2� − @�8)	 
If	4� < 4&, set	B = @�	 
Step 12: 

Compute 	2� = (2� − @8) =(0.011218202, 0.010096351,−0.522740926),  these are 

the starting values for��, ��	and	�&	to be used byBroyden’s 

method in approximating the solution to the given nonlinear 

systems of equation (b) Using Broyden’s method with the 

obtained starting values we find the solution of the nonlinear 

systems of equations (a) and (b) respectively as shown in 

Tables 1 and 2. 

Table 1. Showing result of example (a). 

l mnl mol |mnl − mnlOn| |mol − molOn| 0 0.501993201 0.557770223 0.440607 0.3853 1 0.9426 0.94307 0.04948 0.04803 2 0.99208 0.9911 0.00774 0.00863 3 0.99982 0.99973 0.00018 0.00027 4 1.00000 1.00000 0 0 5 1.00000 1.00000   
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Table 2. Showing result of example (b). 

l mnl mol mpl |mnl − mnlOn| |mol − molOn| |mpl − mplOn| 0 0.011218202 0.010096351 −0.522740926 0.488661798 0.009372 0.522740926 1 0.49988 1.9468 × 10O� −0.52152 0.00011 1.947 × 10O� 1.220926 × 0O& 2 0.49999 8.738 × 10O& −0.52317 2.0 × 10Or 8.738 × 10O& 1.65 × 10O& 3 0.50001 8.658 × 10O' −0.52357 1.0 × 10Or 8.74 × 10O& 4.0 × 10O' 4 0.50000 3.939 × 10Or −0.5236 0 8.66 × 10O' 3.0 × 10Or 5 0.50000 5.81 × 10Os −0.5236 0 8.7 × 10O' 0 6 0.50000 2.091 × 10Os −0.5236 0 3.94 × 10Or 0 

 

4. Conclusion 

This work considered two basic methods of approximating 

the solutions of nonlinear systems of equations. The Steepest 

Descent method provided good and sufficient initial guess 

(starting value) for the Broyden’s method. The starting values 

provided by Steepest Descent method were then used by 

Broyden’s method to arrive at the approximate solution for 

each given systems of equations. This technique replaces the 

inverse of the Jacobian matrix [J] in Newton’s method with a 

matrix	70O�	whose inverse is directly determined at each step 

by up-dating the previous inverse thereby eliminating many 

computational steps if the problem were to be solved using 

Newton’s method. 
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