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Abstract: Loss function is one of the most topics in Bayesian analysis. The aim of this paper is to study the estimation of the 

shape parameter of Laplace distribution using Bayesian technique under a new loss function, which is a compound function of 

LINEX function. The Bayes estimator of the parameter is derived under the prior distribution of the parameter based on 

Gamma prior distribution. Furthermore, Monte Carlo statistical simulations illustrate that the Bayes estimators obtained under 

LINEX-based loss function is affected by the prior parameter and the value of the shape parameter of the LINEX-based loss 

function. But when the sample size is large, they have less influence on the estimation result. 
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1. Introduction 

Laplace distribution is a commonly used distribution for 

modeling lifetime in engineering field. Because of its 

distribution with peak and thick tail, it is a more suitable 

distribution to describe the financial data than the normal 

distribution, so it has more research and application in the 

field of finance [1-7]. In recent years, the distribution has 

also been applied to image analysis, mechanical engineering 

and other fields [8-11]. 

The probability of Laplace distribution is as follows: 
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where ( , )µ ∈ −∞ +∞
 
is the location parameter and 0λ >  is 

the scale parameter. 

As an important class of statistical distributions, the 

statistical inference of parameters of Laplace distribution has 

attracted great attention. Iliopoulos and Balakrishnan [12] 

developed exact inference for the location and scale 

parameters of Laplace distribution based on their maximum 

likelihood estimators (MLEs) with a Type-II censored data. 

Gel [13] proposed a new test of fit for a Laplace distribution 

based on sample skewness and kurtosis and a robust L1-

estimator of scale about a sample median. Shi et al. [14] 

studied robust estimation for linear and mixture linear errors-

in-variables regression models based on the relationship 

between the least absolute deviation criterion and MLE in a 

Laplace distribution. Rasheed and Al-Shareefi [15] studied 

the minimax estimation problem of Laplace scale parameters 

under the log error squared loss function. More studies can 

be found in [16-19]. 

Loss function plays important role in Bayesian statistical 

inference. Squared error loss function is the most often used 

function in Bayesian analysis. But in some reliability and 

lifetime field, overestimation and underestimation have 

different effects on decision results. In these situations, 

squared error loss function cannot work well. Then some 

scholars proposed several asymmetric loss functions [20-25], 

such as LINEX loss function, entropy loss function, etc. 

LINEX loss function is the most well-known asymmetric loss 

function. In recent years, a LINEX-based symmetric loss 

function is proposed by [27]. In literature [27], some 

excellent properties of the loss function are pointed out, and 

the Bayes estimation of the parameters of normal distribution 

and exponential distribution were studied under the loss 

function. In recent years, the reference [28-30] studied the 

Bayes estimation of Poisson distribution, Pareto distribution 

and Burr XII distribution parameter under the LINEX-based 

symmetric loss function.  

This paper will also study Bayes estimation of the 
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parameter 1θ λ−=  under this LINEX-based symmetric loss 

function. This paper discussed the Bayes estimation with 

Quasi-information prior distribution of scale parameter of 

Laplace distribution estimation. Further, the admissibility of 

a class of estimators is also discussed. 

2. Preliminaries 

In the following discussion, we always suppose that 

1 2, , ,⋯ nX X X  is a sample drawn from Laplace distribution 

(1), where the location parameter µ  is known. Denote 

1 2( , , , )⋯ nx x x x=  is the observation of sample 

1 2( , , , )⋯ nX X X X=  and 
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t x µ
=

= −∑ is the observation of 

statistics 
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T X µ
=

= −∑ . 

When given the observation 1 2( , , , )⋯ nx x x x= , the 

likelihood function of parameter θ  can be derived as 

follows: 

1

1

( ; ) ( | , )

exp( | |)
2

n

i

n

i

i

n t

l x f x

x

e
θ

θ µ θ

θ θ µ

θ

=

=
−

=

= − ⋅ −

∝

∏

∏                (2)  

By solving the log-likelihood function 
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the MLE of θ  is 

ˆ
MLE

n
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Let 
1

| |

n

i

i

T X µ
=

= −∑ , then according to Rasheed and Al-Shareef 

[15], the statistic T is distributed with Gamma distribution 
( , )n θΓ . Then 

n
ET

θ
= .                                     (4) 

Prior distribution and loss function play an important role 

in Bayesian statistical inference. In this paper, the prior 

distribution of the parameter is the Gamma prior distribution
( , )α βΓ , with probability density function 

1( ; , ) , , 0, 0
( )

e
α

α βθβπ θ α β θ α β θ
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      (5) 

As the most important component of Bayesian statistical 

inference, loss function plays a key role in choosing the 

appropriate loss function for robustness of statistical 

estimation. Because in the estimation of reliability and failure 

rate, often overestimate will bring greater losses, so although 

the squared error loss function is the most widely used loss 

functions, but the development of new symmetric and 

asymmetric loss function is also very necessary. The LINEX 

loss function is the most commonly used asymmetric loss 

function: 

( ) 1, 0c
cL e c c∆∆ = − ∆ − ≠                           (6) 

Where δ θ∆ = − , and δ  is an estimate of the parameter θ . 

In the following discussion, we will discuss Bayesian 

estimation of scale parameter of Laplace under the LINEX-

based loss function, which is also named compounded 

LINEX symmetric loss function and given as follows: 

( ) ( ) ( ) 2,c c
c cL L L e e∆ − ∆

−∆ = ∆ + ∆ = + −              (7) 

Where δ θ∆ = −  and 0c >  is the shape parameter of ( )L ∆ . 

Figure 1 gives the shape of the loss function with 1c = . 

 

Figure 1. The shape of loss function ( )L ∆ . 

Lemma 1 Let δ is an estimator of the parameter θ . For 

any prior distribution ( )π θ  of parameter θ , under the 

LINEX-based loss function (6), the Bayes estimator of the 

parameter θ  is  
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And the Bayes estimator is unique, when assuming the 

Bayes risk ( )r δ < +∞ . 

Proof. Under the LINEX-based loss function (7), the 

Bayes risk function of estimator δ is 

( ) [ ( ( , ) | )]r E E L Xθδ θ δ=  

To let ( )r δ reach the minimum, we need ( ( , ) | )E L Xθ δ  to 

reach the minimum almost everywhere. 

Because 
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Therefore, one can only need the right side of the upper 

formula is minimized, then let 

( ) ( | ) ( | ) 2c c c cf e E e X e E e Xδ θ δ θδ − −= + − . 

It is easy to get  

( ) ( | ) ( | )c c c cf ce E e X ce E e Xδ θ δ θδ − −′ = − , 

2 2( ) ( | ) ( | )c c c cf c e E e X c e E e Xδ θ δ θδ − −′′ = + . 

Due to ( ) 0f δ′′ > , the Bayes estimator ˆ
Bδ  of parameter θ  

satisfies ( ) 0f δ′ = . Then the Bayes estimator ˆ
Bδ  of parameter 

θ  is 
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Now we prove the uniqueness of the evidence: To prove 

the uniqueness, as long as the proof of ˆ( )Br δ < +∞ . According 

to known condition ( )r δ < +∞  and the relation ˆ( ) ( )Br rδ δ< , 

the result ˆ( )Br δ < +∞  is obvious. 

This completes the proof. 

3. Bayes Estimation 

This section will study the Bayes estimation of the known 

shape parameter of the Laplace distribution under the 

LINEX-based loss function. 

Theorem 1. Suppose that 1 2, , ,⋯ nX X X  is a sample of size 

n, which is drawn from Laplace distribution with probability 

density function (1). Here the location parameter µ  is 

known. Denote 1 2( , , , )⋯ nx x x x= is the observation of sample 

1 2( , , , )⋯ nX X X X=  and 
1

| |

n

i

i

t x µ
=

= −∑ is the observation of 

statistics
1

| |

n

i

i

T X µ
=

= −∑ . The prior distribution of the parameter 

θ is the Gamma prior distribution (4). Then under the 

LINEX-based loss function, the Bayes estimator of the 

unknown shape parameter θ  is 

ln
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Proof. Combining the likelihood function (2) with the 

Gamma prior probability density function (4), the posterior 

probability density function of θ  can be derived using 

Bayes’ Theorem as follows 
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Then the posterior distribution of parameter θ is Gamma 

distribution with parameter n α+  and Tβ + , noted by 

| ~ ( , )X n Tθ α βΓ + + .  

That is the corresponding probability density function is 
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Then according to Lemma1, under the LINEX-based loss 

function (7), the Bayes estimator of θ can be derived as 

follows 
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4. Numerical Simulation 

Using Monte Carlo statistical simulation, this paper 

generate random sample from the Laplace distribution (1) 

with parameters of 1µ = , 1.0θ = and sample sizes n=10, 20, 

30, 50, 75, 100. Repeat the simulation experiment N=5000 

times and use the estimate of the mean 
1

1ˆ ˆ
N

i

i
N

θ θ
=

= ∑  as the 

estimated values of the parameterθ , and use the estimated 



 International Journal of Data Science and Analysis 2017; 3(6): 85-89 88 

 

mean square error 
2

1

1ˆ ˆ( ) ( )

N

i

i

ER
N

θ θ θ
=

= −∑ as a measure of good 

estimation standards. Here ˆ
iθ  is the ith estimate of the 

parameter θ . The estimated and mean square errors of the 

maximum likelihood and Bayes estimators of the parameters 

are shown in Tables 1 and 2, in which the mean square error 

is in parentheses. 

Table 1. Estimation and mean square error under different sample sizes ( 1α =  and 1β = ). 

n 10 20 50 75 100 

MLδ  1.1128 (0.1611)  1.0587 (0.0697) 1.0210 (0.0214) 1.0131 (0.0143) 1.0097 (0.0104) 

Bδ (c=0.5) 1.0913 (0.1170) 1.0531 (0.0607) 1.0202 (0.0204) 1.0128 (0.0139) 1.0095 (0.0102) 

Bδ (c=1.0) 1.0948 (0.1202) 1.0538 (0.0611) 1.0203 (0.0204) 1.0128 (0.0139) 1.0095 (0.0102) 

Bδ (c=1.5) 1.1009 (0.1258) 1.0551 (0.0617) 1.0205 (0.0205) 1.0129 (0.0139) 1.0095 (0.0102) 

Table 2. Estimation and mean square error under different sample sizes ( 0.5α =  and 1.5β = ). 

n 10 20 50 75 100 

MLδ  1.1134 (0.1729) 1.0499 (0.0630) 1.0226 (0.0226) 1.0133 (0.0141) 1.0093 (0.0098) 

Bδ (c=0.5) 0.9880 (0.0837) 0.9942 (0.0457) 1.0015 (0.0199) 0.9996 (0.0130) 0.9991 (0.0092) 

Bδ (c=1.0) 0.9908 (0.0853) 0.9949 (0.0459) 1.0016 (0.0199) 0.9996 (0.0130) 0.9991 (0.0092) 

Bδ (c=1.5) 0.9957 (0.0882) 0.9960 (0.0462) 1.0018 (0.0199) 0.9997 (0.0130) 0.9992 (0.0092) 

 

From Table 1 and Table 2 it can be seen that the Bayes 

estimators obtained under LINEX-based loss function is 

affected by the value of the shape parameter estimation of c. 

When sample size n is small, the value of parameter has a 

larger influence on the estimation results, but with the 

increase of sample size n, the value of mean square error 

estimate is decreasing. When the sample size n is larger than 

50, the influence of is very small, and sometimes can be 

ignore and the estimated value of more and more close to the 

true values of parameters. At the same time, compared with 

Table 1 and Table 2, we find that when the sample size n is 

large, the change of prior distribution has less influence on 

the estimation result. 

5. Conclusion 

Because of the loss function plays an important role in the 

Bayes statistical inference, construction of new symmetric 

loss function plays an important role in the enrichment and 

development of Bayes statistical inference theory, this paper 

based on the LINEX loss function, a new class of LINEX-

based symmetric loss function is proposed. In this paper, the 

Bayes estimation of the parameter is derived under the loss 

function. Furthermore, the Bayes estimation of scale 

parameter of Laplace distribution is further studied. The 

Bayes estimators of the parameters are derived under the 

prior distribution of the parameters as the Gamma prior 

distribution. Finally, the properties of the estimators are 

investigated by means of Monte Carlo statistical simulation. 
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