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Abstract: People are often exposed to toxic or hazardous (e.g. radioactive radon and lead) elements and rays, without even 

knowing so. Toxicity often results from an individual’s prolonged exposure to toxic substances. A thorough examination of 

some individuals’ blood or urine samples for the quantities of hazardous substances or elements, often gives a multivariate data 

(i.e. matrix of cases against elements) on toxicity. The pertinent response variable is often binary response (or count data) type 

and hence the Generalized Linear Models (GLM) of it can be fitted using our proposed techniques. This paper purports to 

identify models in GLM that can be used to study toxicity when it is ‘captured’ as count data or Binary Response Variables 

(BRV). An illustration of how the techniques work is done by using a sample of data on some artisans. 
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1. Introduction 

Pollution happens in various ways; environmental and 

occupational exposures to pollutants are usually experienced 

by artisans [4]. Environmental pollution can sometimes be 

due to human inappropriate activities (e.g. the dumping of 

toxic waste in residential locations) or natural (e.g. the 

natural emission of radioactive radon in residential buildings 

(indoor radon)) [5] [6] [7]. In the former case, the activity 

can be easily stopped, whilst in the latter case, little or 

nothing can be done. With respect to occupational exposure; 

some measures can be put in place to usurp their effects on 

humans or, at least, reduce the effects to the barest minimum. 

It is because of occupational exposure that the technologists, 

and artisans, working in radioactive environments, are 

strongly advised to display the ‘symbol’ for radioactivity in a 

conspicuous location around their laboratories and 

workshops respectively and to always use protective gadgets 

and advise their patrons and customers to do the same. 

Accidental exposure is also possible, it may happen in a 

mineral mining field or at a nuclear energy station such as the 

one of Chernobyl and Fukushima [4]. When people are in a 

polluted environment, they are said to be exposed to 

dangerous (or toxic) substances (e.g. indoor radon, fungi 

spores, and lead). Hence toxicity, in an individual, often 

results from his/her prolonged exposure to toxic substances. 

The individual will be ‘pronounced’ toxic, with respect to the 

toxic substance, if the estimated quantity of the substance 

found in the samples (e.g. blood or urine) from his/her body 

is higher than the quantity that can be tolerated by a human 

body (i.e. without associating any allied ailments). Upon a 

thorough examination of some individuals’ blood or urine 

samples for the quantities of ‘hazardous’ substances or 

elements, a multivariate data (i.e. matrix of cases against 

elements) on toxicity will be obtained [3]. With respect to a 

count data or response variable ( , 1, 2,...,iy i n= ), that is, 

dichotomous in nature, generalized linear models of toxicity 

can be fitted [2] [6] [7]. EDA tools are very ‘restricted’, in 

usage, and subject to misinterpretations with respect to these 

two cases (i.e. count data and binary response variables) 

because the numerical code of each BRV, say, is either zero 

(0) or one (1). 

2. Exploratory Data Analysis (EDA) and 

Binary Response Variables (BRV) 

Any BRV ( y ) is necessarily dichotomous in nature. That 
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is, it can have either of the following pairs of responses; yes 

or no, high or low, tall or short, diseased or not-diseased, 

alive or dead etc. BRVs are usually coded with 1 or 0 with 

respect to the analyst’s discretion. For instance, an analyst 

may adopt the following with respect to his/her BRV for a 

particular work: 
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sample’s measure of central tendency or mean ( ( )E y ) is 

now simply the ‘proportion (p)’ of the responses that are 
coded 1 (i.e. yes). Similarly; the variance (V(y)) can be 
expressed in terms of p, as shown below:  
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Where ( ) ( )2
2 1 1

0 0y y= ∂ = ∂ =  and 1p q+ = . Equations (1) 

and (2) are strong indications for the Bernoulli ( ( )Ber p ) 

distribution. Because of the relationships existing amongst 
the; Bernoulli, Binomial, Poisson, Normal (i.e. the 
Exponential Family of Distributions (EFD)), it is reasonable 
to model the BRV with the GLM which ‘toggles’ around 
EFD easily. The choice of an EDA tool however, may be 
inappropriate because, they often results in non-informative 
descriptive or pictorial representations. For example a 
histogram or a box-plot will contain just two pictorial 
representations with very ‘little’ information on y. Also the 
stem-and-leaf plot often results into descriptive 
representation having just two lines of zeros and ones. 
Although cluster analysis still possess ‘little’ usefulness but 
they can only be used to ‘split’ the responses into just two 
clusters as well. This paper purports to identify models in 
GLM that can be used to study toxicity when it is ‘captured’ 
as count data or BRV. 

3. Toxicity and GLM in R 

GLM are extensions of traditional regression models that 

allow the mean to depend on the explanatory variables 

through a link function (e.g. log, logit, probit, cloglog, 

identity, sqrt) and the response variable to be any member of 

a set of distributions called the EFD. Toxicity can be studied 

through GLM and the R language in two ways; when the 

‘experimental units’ or organisms are monitored to mortality 

and when ‘experimental units’ are just ‘screened’ for 

vulnerability to toxicity. The R function for fitting a 

generalized linear model is “glm()”. There are many methods 

(or commands) for ‘glm objects’, they include; “summary”, 

“coef”, “resid”, “predict”, “anova” and “deviance” [2].  

3.1. Assumptions on Variables and General Setup for GLM 

in R 

Throughout, we shall assume that; 

1. BRV or count data (Y (n X 1)) and their corresponding 

multivariate data (X (n X m)) can be represented as below  
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2. Y further follows one member of the EFD (e.g.

( ),Y Bin n p∼ ) with some parameterization say, ξ known as 

the “linear predictor”, such that Xξ β= . 

We are required to estimate the parameters ( β (m X 1)). 

Now let η  and µ  denote the natural and mean 

parameterizations of the pertinent member of the EFD. Then;  

3. There is a scale parameter φ  through which we can 

estimate over-dispersion. Over-dispersion essentially 
describes the situation whereby the actual V (Yi); for some i 

= 1, 2, …,n, exceeds the GLM variance ( )iVφ η . 

4. There is a link function ℓ  defined by

( ) , 1,2,...,i i i nµ ξ= =ℓ . 

5. There is a canonical link function ℓ  defined by

( ) , 1,2,...,i i i nµ η= =ℓ . 

3.2. When the Organisms are Monitored to Mortality 

When the “experimental units” are monitored to mortality, 

modelling the toxicity with GLM assumes that the toxicity 

increases with the increase in; exposure of the units, dose of 

the toxic element until when the units get exterminated. The 

following example illustrates the how the technique works. 

The data was obtained when groups of 20 male and female 

moths were exposed to six “increasing” levels of a 

“pyrethroid” in order to “capture” its toxicity to tobacco 

budworm. The technique is contained in the following R 

commands: 

> library ("rJava") 

> library ("glmulti") 

> ldose<-rep (0:5,2) 

> numdead<-c (1,4,9,13,18,20,0,2,6,10,12,16) 

> sex<-factor (rep(c("M","F"), rep(6,2))) 

> SF<-cbind (numdead, numalive=20-numdead) 

> budworm<-glm (SF~sex*ldose, family=binomial) 

> plot (numdead, ldose) 

Then R will respond by plotting the graph; 
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Figure 1. Showing the Plot of the Six Increasing Level of dose (i.e. 0 to 5) to the Number of Male (Points Above) and Female (Points Below) Moths that had 

Died. This Plot was Requested by the Last Command (i.e. “Plot (Numdead, Ldose)”).  

The issuance of the commands; 

> summary(budworm)  

> anova(budworm, test="Rao")  

Will make R to give the result; 

Call: 

glm(formula = SF ~ sex * ldose, family = binomial) 

Deviance Residuals:  

Min 1Q Median 3Q Max 

-1.39849 -0.32094 -0.07592 0.38220 1.10375 

Coefficients: 

 Estimate Std. Error z value Pr(>|z|) 

(Intercept) -2.9935 0.5527 -5.416 6.09e-08 *** 

sexM 0.1750 0.7783 0.225 0.822 

Ldose 0.9060 0.1671 5.422 5.89e-08 *** 

sexM:ldose 0.3529 0.2700 1.307 0.191 

---     

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

(Dispersion parameter for binomial family taken to be 1) 

Null deviance: 124.8756 on 11 degrees of freedom 

Residual deviance: 4.9937 on 8 degrees of freedom 

AIC: 43.104 

Number of Fisher Scoring iterations: 4 

Then the command;  

> anova(budworm, test="Rao") 

Gives the result; 

Analysis of Deviance Table 

Model: binomial, link: logit 

Response: SF 

Terms added sequentially (first to last) 

 Df Deviance Resid.Df Resid.Dev Rao Pr(>Chi) 

NULL 11 124.876     

sex 1 6.077 10 118.799 6.051 0.0139 * 

ldose 1 112.042 9 6.757 95.834 
<2e-16 

*** 

sex:ldose 1 1.763 8 4.994 1.751 0.1858 

---       

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

The command; 

> summary(glm(SF~sex+ldose,family=binomial)) 

Will then make R to give the result; 

Call: 

glm(formula = SF ~ sex + ldose, family = binomial) 

Deviance Residuals:  

Min 1Q Median 3Q Max 

-1.10540 -0.65343 -0.02225 0.48471 1.42944 

Coefficients: 

 Estimate Std. Error z value Pr(>|z|) 

(Intercept) -3.4732 0.4685 -7.413 1.23e-13 *** 

sexM 1.1007 0.3558 3.093 0.00198 ** 

Ldose 1.0642 0.1311 8.119 4.70e-16 *** 

---     

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

(Dispersion parameter for binomial family taken to be 1) 

Null deviance:  124.8756  on 11 degrees of freedom 

Residual deviance:  6.7571   on 9 degrees of freedom 

AIC: 42.867 

Number of Fisher Scoring iterations: 4 

3.3. When the Organisms are inspected for Information on 

Toxicity 

Here, the organisms (i.e. experimental units) or simply 

“units” are assembled and samples (e.g. blood and urine 

samples) are taken from each of them and used to estimate 

the quantities of the toxic elements available in each of the 

“sampled” organism. An array of quantities in which 

columns are allocated to toxic elements and rows, allocated 

to cases (i.e. units) is the matrix X, in the system of equation 

(3). The matrix of the response variables Y is usually 

unknown at the beginning, but with this technique, the matrix 

X will be used to data-mine some “hidden” information 

about Y. Such “data-mined” information on Y is either BRV-

typed or count data typed depending on the quantity of 

hidden information that can be accessed through this 

technique. If universal “tolerance limits” exist for the units 

with respect to the toxic elements then a count data type Y is 

achievable otherwise (i.e. if they exist with respect to some 

or no toxic element), a BRV type Y is achievable. 

3.4. Determination of Matrix Y When Tolerance Limits 

Exist for all Toxic Elements 

The unit of measurement of the quantity of toxic element is 
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either “ppm” or “ /g dLµ ”, in this work; we shall assume the 

unit is 
/g dLµ

throughout. Each data entry 

( , 1,..., 1,...,ijx i n j m= = ) in matrix X is compared with 

its corresponding tolerance limit ( , 1, 2,...,i i mτ = ) column-

wisely, and instances in which the data entries are greater than 
their respective tolerance limits are counted and entered as the 

response variable , 1, ...,iy i n=  for the corresponding 

experimental unit. Matrix Y will be “created” the moment we 

enter the last response variable ny
. Here, the response matrix Y 

will contain nonnegative integers alone (i.e. 

, 0 , 1, 2,...,i iy y n i n∈ Ζ ≤ ≤ = ). The following section 

(3.5) contains a vivid numerical illustration of this technique. 

3.5. Numerical Illustration on Vulnerability to Toxicity 

When all Tolerance Limits Exist 

Table 1. Showing an Extract of the Matrix X with the Respective Tolerance 

Limits (Below the Line). 

V2 V3 V4 V5 V6 V7 V8 V9 

19.64 5.95 0.95 0.74 0.22 0.99 45.37 2.36 

18.45 3.77 0.62 0.50 0.12 0.80 23.05 2.19 

   …     

30.1 5.14 1.51 1.24 0.37 0.51 24.89 1.63 

28.25 6.30 0.82 0.88 0.20 0.42 17.45 1.16 

32.14 5.52 1.06 0.94 0.25 0.57 18.53 1.66 

The data for this illustration was obtained through samples 
from artisans operating in some mechanic villages (along 
Abeokuta-Ibadan expressways) around Abeokuta metropolis. 
The toxic elements are eight in number (i.e. V2, V3, …, V9), 
118 cases (or units) are used, an extract of the data and their 
respective tolerance limits are as contained in table 1 below 

(with all entries measured in /g dLµ ); 

The corresponding extract of matrix Y (contained in column 

I or “V1”) is denoted ( )4,3,..., 4,1TY = . The matrices Y and X 

are “supplied” together to R, such that the matrix Y occupies 

the “V1” location and the tolerance limits are excluded. The 

resulting “data-frame” is named “dat1”. The R codes for this 

operation are as contained in the three commands below; 

 

If the above three commands are immediately followed by; 

>outdat1<-glmulti(V1~V2+V3+V4+V5+V6+V7+V8+V9, 
data=dat1, method="g", maxit=30) 

Then the Genetic algorithmic process to carry-out 

iterations and identify the formula (model) that will best “fit” 

the “contents” of dat1 is automatically initialized. An 

“extract” of the immediate response from R is; 

Initialization. 

TASK: Genetic algorithm in the candidate set. 

Initialization. 

Algorithm started. 

After 10 generations: 

Best model: 

V1~1+V5+V7+V8+V3:V2+V4:V2+V5:V4+V6:V2+V6:V5+

V7:V2+V7:V6+V8:V2+V8:V3+V8:V4+V8:V5+V8:V7+V9:

V2+V9:V3+V9:V4+V9:V6 

Crit= 291.254155883838 

Mean crit= 310.663748809868 

Change in best IC: -9708.74584411616 / Change in mean 

IC: -9689.33625119013 

After 20 generations: 

Best model: 

V1~1+V7+V3:V2+V5:V2+V5:V4+V7:V2+V7:V3+V7:V6+

V8:V3+V8:V4+V8:V7+V9:V3+V9:V4+V9:V6 

Crit= 284.714137298027 

Mean crit= 306.254977037995 

Change in best IC: -6.5400185858104 / Change in mean 

IC: -4.40877177187315 

… 

After 750 generations: 

Best model: 

V1~1+V2+V4+V7+V9+V5:V2+V6:V3+V6:V4+V7:V2+V7:

V4+V7:V6+V8:V2+V8:V4+V8:V7+V9:V5 

Crit= 273.867533645176 

Mean crit= 279.11632696666 

Improvements in best and average IC have bebingo en 

below the specified goals. 

Algorithm is declared to have converged. 

Completed. 

 

Figure 2. Showing that the Genetic Algorithmic Process Carried out 750 Iterations Before Identifying the Best Model to Fit the Data (dat1). The Plot of 

“Support(aic)” Versus “Best Models” Shows Where Lies the Critical Value Pictorially. Notice that the Critical (“crit”) and Mean Critical (“Mean Crit”) 
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Values were Continually Reducing as the Number of Iterations Increases until Convergence was Achieved After 750 Iterations with “Crit= 

273.867533645176” and “Mean Crit= 279.11632696666”. 

To further show that R’s choice of “Best model” is “reliable” and to carry-on, the researcher needs to give the codes below; 

 

The immediate response of R is as contained in the figure 3 below; 

 

Figure 3. Showing the General Result from the Fitting of the Model (i.e. After Using R’s “Best Model” for Fitting “dat1”). 

Now, besides the estimates of the coefficients, there are two noteworthy values, in figure 6, they are the “residual deviance” 

(26.106) and the “AIC” (411.28). These two values help “certify” it that our model certainly leads to the best fit. Further, if we 
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had chosen the “simplest” model (as it is usually done without the use of the “glmulti” function), then we would have supplied 

and receive (output) respectively, the content of figure 4 below; 

 

Figure 4. Showing the Codes with the “Usual” Model (Without Glmulti) and the Corresponding Output. 

Notice that; 

1. The residual deviance that was 26.106 (with our best model) has now risen to 39.306 (with the usual model) and the AIC 

that was 411.28 has now risen to 412.48. 

2. There is no “over-dispersion”, the evidence for this is contained in figure 5 below; 

 

Figure 5. Showing that There is no Over-dispersion Since the Variance of Y (i.e. 2.542445) is Less than Its Mean (i.e. 3.517) Which is an Unbiased Estimate of 

the Variance in Poisson Distribution. 

Consequently, the fit for “dat1” is; 
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1 3 6 8 1 4 2 5 3 5

1 6 3 6 5 6 1 7 3 7 6 7 4 8

Y = -3.773 + 0.026*E  + 1.975*E  + 4.637*E  + 0.53*E  + 0.027*E *E  + 0.293*E *E  -4.693*E *E  

-0.102*E *E -1.68*E *E  + 8.739*E *E +0.001*E *E  +0.033*E *E -0.065*E *E -0.202*E *E
 (4) 

Where , 1, 2,...,8iE i = , are the data entries per element per artisan and all other coefficients are approximated values of the 

coefficients in figure 4. 

3.6. Further Diagnostic Checks on the Fit for Cases in Which all Tolerance Limits Exist 

There are other diagnostic checks that corroborate the fact that equation (4) is the best fit for the data (dat1), some of them are; 

1. The plot of Y against the residuals which gives the following (figure 3); 

 
Figure 6. Showing That the Plot of Y Against the Residuals does not Connote any Relationship Between Them. 

2. By comparing the AIC (for out1), in figure 6, with AIC 

(for out2), in figure 7, we can easily see that the fit for out1 is 

better than that for out2. The following pairs of statistics 

(figure 7) also testify to this fact; 

 

Figure 7. Showing That the Fit for out1 is Better Than That From out2. 

3. The “Hosmer and Lemeshow goodness of fit (GOF) 

test” for out1 (figure 8); 

 
Figure 8. Showing the P-value Equals to 1, Which Means That the 

Corresponding Fit for out1 Cannot be Due to “Chance” (i.e. the Fit is 

Reliable) and the X-squared Statistic (i.e -4.3684) is also Good. 

The vulnerability to toxicity of each artisan is a probability 

measure ( ( ), 1,2,...,iP Y y i n= =  ), its numerical value, for 

the entire data (dat1) will be obtained with the command 
“log10(fitted(out1)”). An extract of the probabilities is contained 

in figure 9 below (i.e. by taken just four decimal places); 

 
Figure 9. Showing an Extract of the Vulnerability to Toxicity of the Artisans. 

3.7. Determination of Matrix Y When Tolerance Limits 

Exist for Some or no Toxic Elements 

The determination of the response matrix Y (i.e. a BRV) is 
through the matrix X which is used to data-mine it, using the 
following technique; the elements whose tolerance limits 
exist are “assumed” to be the “main” variables whilst all 
other variables are “assumed” to be “auxiliary”. In the data 
matrix X (i.e. in the equation 3), the first toxic element is 
actually “lead”. Although the human body does not possess 
any tolerance for lead (i.e. no matter how small the quantity 
of lead, it is still hazardous to man). However, Nriagu et al. 
(2008) helped determined the average lead in blood quantity 
of city children (aged 2 – 9 years) in Ibadan to be 

( )9.9 5.2 /g dLµ±  which depicts that, a non-artisan “child” 

living in Ibadan and its environs could have as much as 

( )15.1 9.9 5.2 /g dLµ= + in his/her blood. The mechanic 

villages from which the data in matrix X were obtained are 
on the two existing Abeokuta-Ibadan express-roads; hence 

the value 15.1 /g dLµ  is quite useful in the present work. If 

we assume that, as the children grow to be adults, they 

acquired more, say about 4.9 /g dLµ  “environmental” lead 
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into their body systems. Then a non-artisan adult in Ibadan 
and its environs is expected to have, on the average, 20

/g dLµ of lead in his/her blood. Consequently, if an artisan 

has above this quantity (i.e. 20 /g dLµ ) in his/her blood, we 

can “safely” assume that the additional quantity is due to 

occupational toxicity. The value 20 /g dLµ was therefore 

utilized as the lead (i.e. the main element) toxicity limit for 
the artisans. By determining toxicity limits for the auxiliary 
variables (or by using their estimated population mean as 
toxicity limits), the auxiliary variable were used to “fine-
tune” (in the sense that, if four or more of the auxiliary 
variables are above their toxicity limits, their corresponding 
yi, i=1,2,…,n that was formally 0 will become 1. Also yi that 
was 1 before can become 0 if its main element is within +10 
over its toxicity limit and only very few, say one of its 
auxiliary variable value is more than its toxicity limit) to 
obtain the concatenated matrix whose extract is; 

 

Figure 10. Showing an Extract of the Concatenated Matrix (Y:X) Which is 

now the “Input” to R (Below the Line are the Toxicity Limits). 

3.8. Numerical Illustration on Vulnerability to Toxicity 

When Tolerance Limits Exist for Some or no Toxic 

Elements 

The corresponding data-frame is “dat3”, here; Y = yi = 0 

or 1 (i.e. 0 denotes that the vulnerability to toxicity is 

“relatively” low in this particular case when compared with 

the other cases in the data, whilst yj = 1 denotes it is 

relatively high) we now proceed as before to obtain the best 

model that fits the data as (figure 12); 

> outdat3<-

glmulti(V1~V2+V3+V4+V5+V6+V7+V8+V9,data=dat3, 

method="g", family=binomial) 

Initialization. 

TASK: Genetic algorithm in the candidate set. 

Initialization. 

Algorithm started. 

After 10 generations: 

Best model: 

V1~1+V2+V3+V5+V3:V2+V4:V2+V4:V3+V5:V2+V5:V3+

V5:V4+V6:V4+V6:V5+V7:V3+V7:V4+V7:V6+V8:V5+V8:

V6+V8:V7+V9:V3+V9:V7 

Crit= 63.9154921762682 

Mean crit= 797.229429038279 

Change in best IC: -9936.08450782373 / Change in mean 

IC: -9202.77057096172 

After 580 generations: 

Best model: 

V1~1+V5+V6+V8+V9+V5:V4+V6:V2+V6:V4+V6:V5+V7:

V2+V7:V5+V7:V6+V8:V6+V9:V3+V9:V7+V9:V8 

Crit= 47.7447083810335 

Mean crit= 58.60998260074 

Improvements in best and average IC have bebingo en 

below the specified goals. 

Algorithm is declared to have converged. 

Completed. 

 

Figure 11. Showing the Extract of the Result When the R Command to Initialize the Iteration to Identify the Best Model (it was Achieved After 580 Iterations) 

was Given to R. The Plot of “Support(aic)” Versus “Best Models” Shows Where Lies the Critical Value Pictorially. As before, Notice That the Critical (“crit”) 

and Mean Critical (“Mean Crit”) Values were Continually Reducing as the Number of Iterations Increases Until Convergence was Achieved After 580 

Iterations with “Crit= 47.7447083810335” and “Mean Crit= 58.60998260074”. 
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We now continue with a couple of commands in figure 12. That is; 

 
Figure 12. Showing the Couple of Commands with Which the Model is Fitted and the Result Summarized Before the Display. 

The result is as contained in figure 13 below; 

 

Figure 13. Showing the Result of the Fit for “dat3”. 

Consequently, the fit for “dat3” is; 
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4 5 7 8 3 4 1 5

3 5 4 5 1 6 4 6 5 6

5 7 2 8 6

Y = 1003.646 -891.366*E  - 8213.256*E  -17.648*E  +182.545*E  +589.11*E * 24.647* *

-1871.122*E *E  +4450.705*E *E -6.856*E *E  -1015.175*E * 7805.263* *

90.718* * 2.004* * 333.784* *

E E E

E E E

E E E E E E

+
+

+ + − 8 7 81.493* *E E+
        (5) 

Where , 1, 2,...,8iE i = , are the data entries per element 

per artisan and all other coefficients are approximated values 

of the coefficients in figure 13. 

The vulnerability to toxicity of all the artisans are obtained 

together through the use of the following three commands 

(figure 14); 

 

Figure 14. Showing the Three Commands with Which the Vulnerability to 

Toxicity are Requested for and an Extract of the Corresponding Output. 

4. Conclusions 

The following conclusions can be reached on the entire 

work, the issue of the command; 

> anova(out1, test="Chisq")  

will generate the following “analysis of deviance table” 

associated with the best fit (frame 11); 

Analysis of Deviance Table 

Model: poisson, link: log 

Response: V1 

Terms added sequentially (first to last) 

 

Figure 15. Showing the Analysis of Deviance Table, It has an Information on 

the Interaction of Elements; (1 and 4), (3 and 6), (1 and 7) and (6 and 7). 

This gives the researcher some hints about some probable 

interacting toxic elements. Although the response, Y for the 

case in which toxicity limits exist for some toxic elements 

has been coded with 0 and 1, but if it is coded as “FALSE” 

and “TRUE” (i.e. such that FALSE=0, TRUE=1), it will still 

work. These results ought to enhance the effectiveness of 

awareness campaigns informing artisans of the need to 

always put on their respective “safety” gadgets whenever 

they are at work. Artisans with high (i.e. TRUE) 

vulnerabilities to toxicity will know that they really have to 

exercise caution as much as possible. The results with respect 

to these coding technique are as contained in the following 

(figure 16, figure 17); 

 
Figure 16. Showing an Extract of “dat4” that was Supplied to R. 

The dat4 was followed by the command;  

outdat4<-

glmulti(V1~V2+V3+V4+V5+V6+V7+V8+V9,data=dat4,met

hod="g", family=binomial) 

which initiates the iterations to determine the best model 

that fits the data (dat4), an extract of the result of which is 

contained in figure 20 below; 

Initialization. 

TASK: Genetic algorithm in the candidate set. 

Initialization. 

Algorithm started. 

After 10 generations: 

Best model: 

V1~1+V3+V4+V5+V6+V7+V3:V2+V4:V2+V5:V2+V5:V3

+V5:V4+V6:V4+V6:V5+V7:V2+V7:V3+V7:V6+V8:V3+V

8:V5+V8:V6+V8:V7+V9:V4+V9:V8 

Crit= 63.9117692465579 

Mean crit= 403.601512673779 

Change in best IC: -9936.08823075344 / Change in mean 

IC: -9596.39848732622 

After 810 generations: 

Best model: 

V1~1+V5+V8+V4:V3+V5:V4+V6:V2+V6:V4+V6:V5+V7:

V2+V7:V3+V7:V4+V7:V5+V8:V7+V9:V6 

Crit= 43.8845106069435 

Mean crit= 63.4907240117881 

Improvements in best and average IC have bebingo en 

below the specified goals. 

Algorithm is declared to have converged. 

Completed. 
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Figure 17. Showing the Extract of the Iteration Process that Identified the Best Model as well as the Corresponding Plot of the Support (aic) Versus Candidate 

“Best Models”. 

With the couple of commands; 

>out4<-glm(V1~1+V5+V8+V4:V3+V5:V4+V6:V2+V6:V4+V6:V5+V7:V2+V7:V3+V7:V4+V7:V5+V8:V7+V9:V6, 

data=dat4, family=binomial) 

> summary(out4) 

The following result (i.e. frame 13) was obtained; 

 

Figure 18. Showing the Result of the Fit for dat4. 

Consequently, the fit for dat4 is (equation 6); 
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4 7 2 3 3 4 1 5

3 5 4 5 1 6 2 6 3 6

4 6 6 7 5 8

704.05 1078.20* 40.37* 106.81* * 1625.14* * 8.93* *

4297.38* * 3651* * 2.52* * 252.61* * 786.45* *

1508.98* * 44.57* * 424.90* *

Y E E E E E E E E

E E E E E E E E E E

E E E E E E

= − − + − + +
− + + + +
− − +

           (6) 

To predict the vulnerability to toxicity, the following set of 

commands is issued to R; 

> pi.hat=predict.glm(out4, dat4, se.fit=TRUE) 

> ci=c(pi.hat$fit-1.96*pi.hat$se.fit, 

pi.hat$fit+1.96*pi.hat$se.fit) 

> exp(ci)/(1+exp(ci)). 

An extract of the result is contained in frame 14 ; 

 
Figure 19. An Extract of the Result on Predicted Vulnerability to Toxicity. 

Any of the approaches; depending on the type of data the 

researcher has (i.e. BRV or count data), could be adopted for 

any survey work on vulnerability to toxicity. 
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